Berikut adalah code python untuk Metode Newton-Raphson
import numpy
as np import
matplotlib.pyplot as plt from sympy
import symbols, diff, lambdify # Define
symbolic variables and functions x =
symbols('x') f_sym = x**3
+ 2*x - 2 f_prime_sym =
diff(f_sym, x) # Convert to
numerical functions f =
lambdify(x, f_sym, 'numpy') f_prime =
lambdify(x, f_prime_sym, 'numpy') # Plot plt.plot(np.linspace(-4,
9, 400), f(np.linspace(-4, 9, 400)), 'r-', linewidth=2) plt.grid(True) plt.title('Root
of $x^3 + 2x - 2$') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.axhline(0,
color='black', lw=0.5) plt.axvline(0,
color='black', lw=0.5) plt.savefig('plot_N-R_OK.png') plt.savefig('plot_N-R_OK.pdf') # Menyimpan plot sebagai PDF plt.show() # Print
heading for iterations output print("Iteration
| Approximation of Root | Function Value at Root") #
Newton-Raphson Method with iteration output x0 = 1 for i in
range(7): x_next = x0 - f(x0) / f_prime(x0) print(f"{i:9} | {x_next:24} |
{f(x_next)}") if abs(f(x_next)) < 0.00001: break x0 = x_next print(f"\nFinal
approximation: x = {x0}, f(x) = {f(x0)}") |
0 Comments